1 /** 2 * Copyright Alex Parker 2013-2014 3 * 4 * This file contains vec3, mat4 data structures and associated operations. 5 **/ 6 7 module meld.maths; 8 import std.math; 9 10 //converts radians to degrees 11 float rad2deg(float radians) 12 { 13 return radians * (180.0f/PI); 14 } 15 16 //converts degrees to radians 17 float deg2rad(float deg) 18 { 19 return (deg * PI) / 180.0f; 20 } 21 22 //represents a 2D vector 23 struct vec2 24 { 25 static immutable vec2 zero = vec2(0.0f, 0.0f); 26 float x, y; 27 28 this(float x, float y) 29 { 30 this.x = x; 31 this.y = y; 32 } 33 34 vec2 opUnary(string op)() 35 { 36 static if (op == "-") 37 return vec2(-x, -y); 38 } 39 40 //multiplies the vector by a scalar, returning the result. 41 vec2 opBinary(string op)(immutable float scalar) 42 { 43 static if (op == "*") 44 return vec2(x * scalar, y * scalar); 45 else static assert(0, "Operator "~op~" not implemented"); 46 } 47 48 vec2 opBinary(string op)(immutable vec2 other) 49 { 50 static if (op == "+") 51 return vec2(x + other.x, y + other.y); 52 else static if (op == "-") 53 return vec2(x - other.x, y - other.y); 54 else static assert(0, "Operator "~op~" not implemented"); 55 } 56 57 //calculate the dot product with the other vector, returning the result. 58 float dot(immutable vec2 other) 59 { 60 return x*other.x + y*other.y; 61 } 62 63 //calculates the squared length of the current vector. 64 float lengthSq() 65 { 66 return dot(this); 67 } 68 69 //calculates the length of the vector. 70 float length() 71 { 72 return sqrt(lengthSq()); 73 } 74 75 //normalizes the current vector. 76 void normalize() 77 { 78 float len = length(); 79 x /= len; 80 y /= len; 81 } 82 }; 83 84 //represents a 3D vector 85 struct vec3 86 { 87 static immutable vec3 zero = vec3(0.0f, 0.0f, 0.0f); 88 static immutable vec3 forward = vec3(0.0f, 0.0f, 1.0f); 89 static immutable vec3 right = vec3(1.0f, 0.0f, 0.0f); 90 static immutable vec3 up = vec3(0.0f, 1.0f, 0.0f); 91 92 float x, y, z; 93 94 this(float x, float y, float z) 95 { 96 this.x = x; 97 this.y = y; 98 this.z = z; 99 } 100 101 vec3 opUnary(string op)() 102 { 103 return mixin("vec3("~op~"x, "~op~"y, "~op~"z)"); 104 } 105 106 //multiplies the vector by a scalar, returning the result. 107 vec3 opBinary(string op)(immutable float scalar) 108 { 109 return mixin("vec3(x "~op~" scalar, y "~op~" scalar, z "~op~" scalar)"); 110 } 111 112 vec3 opBinary(string op)(immutable vec3 other) 113 { 114 return mixin("vec3(x "~op~" other.x, y "~op~" other.y, z "~op~" other.z)"); 115 } 116 117 //calculate the dot product with the other vector, returning the result. 118 static float dot(immutable vec3 a, immutable vec3 b) 119 { 120 return a.x*b.x + a.y*b.y + b.z*b.z; 121 } 122 123 //calculates the squared length of the current vector. 124 @property float lengthSq() 125 { 126 return vec3.dot(this, this); 127 } 128 129 //calculates the length of the vector. 130 @property float length() 131 { 132 return sqrt(lengthSq()); 133 } 134 135 //normalizes a copy of the vector 136 vec3 normalized() 137 { 138 float len = length(); 139 return vec3(x / len, y / len, z / len); 140 } 141 142 //calculates the cross product with the other vector, returning the result. 143 static vec3 cross(immutable vec3 a, immutable vec3 b) 144 { 145 return vec3( 146 a.y*b.z - a.z*b.y, 147 a.z*b.x - a.x*b.z, 148 a.x*b.y - a.y*b.x 149 ); 150 } 151 }; 152 153 //represents a 4D vector 154 struct vec4 155 { 156 float x, y, z, w; 157 158 this(float x, float y, float z, float w) 159 { 160 this.x = x; 161 this.y = y; 162 this.z = z; 163 this.w = w; 164 } 165 166 vec3 opCast() 167 { 168 return vec3(x, y, z); 169 } 170 } 171 172 //represents a 4x4 matrix 173 struct mat4 174 { 175 float rows[16]; 176 177 this(immutable float rows[16]) 178 { 179 this.rows = rows; 180 } 181 182 //performs a matrix multiplication and returns the result. 183 mat4 opBinary(string op)(immutable mat4 other) 184 { 185 static if (op == "*") 186 { 187 mat4 res; 188 for (int i = 0; i<16; i+=4) 189 for (int j = 0; j<4; j++) 190 res.rows[i+j] = 191 other.rows[i]*rows[j] + 192 other.rows[i+1]*rows[j+4] + 193 other.rows[i+2]*rows[j+8] + 194 other.rows[i+3]*rows[j+12]; 195 196 return res; 197 } 198 } 199 200 vec4 opBinary(string op)(immutable vec4 other) 201 { 202 static if (op == "*") 203 { 204 return vec4( 205 other.x * rows[0] + other.y * rows[4] + other.z * rows[8] + other.w * rows[12], 206 other.x * rows[1] + other.y * rows[5] + other.z * rows[9] + other.w * rows[13], 207 other.x * rows[2] + other.y * rows[6] + other.z * rows[10] + other.w * rows[14], 208 other.x * rows[3] + other.y * rows[7] + other.z * rows[11] + other.w * rows[15] 209 ); 210 } 211 } 212 213 vec3 opBinary(string op)(immutable vec3 other) 214 { 215 static if (op == "*") 216 { 217 return vec3( 218 other.x * rows[0] + other.y * rows[4] + other.z * rows[8], 219 other.x * rows[1] + other.y * rows[5] + other.z * rows[9], 220 other.x * rows[2] + other.y * rows[6] + other.z * rows[10] 221 ); 222 } 223 } 224 225 //the identity matrix 226 static const mat4 identity = mat4([ 227 1.0f, 0.0f, 0.0f, 0.0f, 228 0.0f, 1.0f, 0.0f, 0.0f, 229 0.0f, 0.0f, 1.0f, 0.0f, 230 0.0f, 0.0f, 0.0f, 1.0f 231 ]); 232 233 //produces a axis angle matrix. This will produce a rotation in radians about the normalized axis. 234 static mat4 axisangle(immutable vec3 axis, float angle) 235 { 236 float c = cos(angle), ic = 1.0f - c; 237 float s = sin(angle); 238 mat4 mat = mat4([ 239 c+ic*axis.x*axis.x, ic*axis.x*axis.y-axis.z*s, ic*axis.x*axis.z+axis.y*s, 0.0f, 240 ic*axis.x*axis.y+axis.z*s, c+ic*axis.y*axis.y, ic*axis.y*axis.z-axis.x*s, 0.0f, 241 ic*axis.x*axis.z-axis.y*s, ic*axis.y*axis.z+axis.x*s, c+ic*axis.z*axis.z, 0.0f, 242 0.0f, 0.0f, 0.0f, 1.0f 243 ]); 244 return mat; 245 } 246 247 //produces a translation matrix 248 static mat4 translate(immutable vec3 pos) 249 { 250 return mat4([ 251 1.0f, 0.0f, 0.0f, pos.x, 252 0.0f, 1.0f, 0.0f, pos.y, 253 0.0f, 0.0f, 1.0f, pos.z, 254 0.0f, 0.0f, 0.0f, 1.0f 255 ]); 256 } 257 258 static mat4 basis(immutable vec3 pos, immutable vec3 forward, immutable vec3 up) 259 { 260 vec3 right = vec3.cross(forward, up); 261 return mat4([ 262 forward.x, up.x, right.x, pos.x, 263 forward.y, up.y, right.y, pos.y, 264 forward.z, up.z, right.z, pos.z, 265 0.0f, 0.0f, 0.0f, 1.0f 266 ]); 267 } 268 269 //calculates a projection matrix from the field of view in radians, 270 //the aspect ratio, the near culling plane and far culling plane. 271 static mat4 proj(float fov, float aspect, float n, float f) 272 { 273 float yScale = 1.0f/tan(fov*0.5f); 274 float xScale = yScale / aspect; 275 276 mat4 mat = mat4([ 277 xScale, 0.0f, 0.0f, 0.0f, 278 0.0f, yScale, 0.0f, 0.0f, 279 0.0f, 0.0f, f/(f-n), (-f*n)/(f-n), 280 0.0f, 0.0f, 1.0f, 0.0f 281 ]); 282 return mat; 283 } 284 }